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1. Research Outline

With the merits of low profile, low cost and compact size, microstrip elements are useful for ap-
plications in microwave antennas and antenna arrays. They can be used as the radiating element
of a MIC/MMIC design in aircraft/satellite communications [1], in missile and rocket [2] antenna
systems, as well as many other applications. Due to substantial improvements in fabrication tech-
nologies, microstrip elements can now be designed as useful antennas well into the millimeter-wave
range. Compact size and large scale integration of electronic devices have been driving the trend
towards a multilayered interconnection system. Via holes and other vertical shunt posts, such as
bond wires and air bridges, are increasingly important in microwave integrated circuit/monolithic
microwave integrated circuit (MIC/MMIC) design. Via holes are used to connect parallel microstrip
lines for signal transmission between different layers. Vias can be modeled by lumped circuit ele-
ments at lower frequencies. The equivalent circuits of vias based on the quasi-static analysis have
been investigated by Wang et.al. [27],[28]. At higher frequencies the propagation characteristics of
via holes have a stronger electromagnetic effect on the performance of devices, therefore, rigorous
analysis is necessary to predict frequency response correctly.

A variety of full-wave design analyses have been reported over the past two decades [3] [4].
These techniques include finite-difference time-domain (FDTD) method, finite-element method
(FEM), the method of lines (MOL), transmission line matrix (TLM), and integral equation (IE)
formulations. Using reciprocity, Pozar [5] analyzed microstrip fed rectangular aperture and aperture
coupled patch antennas. The most rigorous and general method is the integral equation formula-
tion. It is based on the electric and magnetic-field integral equations (EFIE/MFIE) governed by
the unknown current distributions on the microstrips and apertures. However, the EFIE/MFIE
formulations suffer from either the highly singular behavior in the spatial domain, or the long
computation time in the spectral domain. A modification of the EFIE/MFIE named the mixed-
potential integral equation (MPIE), is formulated in the spatial domain. It was first introduced by
Harrington [6], and has been extensively used for the analysis of wire antennas. Mosig [3],[7] and
Michalski [8],[9] have applied MPIE models to planar microstrips. Chen et. al. [10] has applied
the MPIE to model apertures in a ground plane.

In this research, a combined MPIE-EFIE formulation was developed to solve 3-D multi-
layered circuits with arbitrary shape. First, the spectral-domain multi-layered Green’s function
was derived analytically by applying the wave matrix method [11] [12]. A hybrid complex image
method (CIM) [13]-[16] and an efficient numerical integration algorithm [17] were implemented to
evaluate the spatial-domain Greens’ function through the Sommerfeld-type integral. Triangular
basis functions [18] were used to expand the electric current distributions on the microstrip line,
patch antenna, and the fictitious magnetic current distribution over the aperture. The simple pulse
function with triangular cross section was adopted here to model the vertical electric current along
the vias. The method of moments was then applied to solve the integral equation pertinent to
the modeling of our problem. The MPIE formulation was used to evaluate the self-coupling terms
of planar subdomains as well as the mutual-coupling terms of planar and vertical cells. The self-
coupling submatrix due to vertical posts is calculated from the EFIE formulation since the analytic
integration over the vertical basis function can alleviate the EFIE’s singularity. The details of the
matrix equation can be found in our previous work [10] [19].

A generalized three-dimensional (3-D) multilayered microstrip circuit is shown in Fig. 1.
The medium is assumed to be infinite in the x-y plane , and the microstrip patterns are assumed to
be of infinitesimal thickness. Both the upper and lower ground planes are removable to represent




either a shielded, semi-open, or open structure. Multiple vias as well a air-bridges are used to con-
nect different microstrips. Grounded vias are also applied to achieve the short effect. The combined
MPIE-EFIE methodology presented in this research meshes the whole microstrip geometry with
small triangular facets. The MPIE formulation is used to evaluate the self coupling terms of planar
subdomains as well as the mutual coupling between planar and vertical cells. The self coupling
submatrix due to vertical posts is calculated from the EFIE formulation.

2. Numerical Results and Discussion

Five applications are discussed in this section. All computations are performed on the cluster
system of IBM RS/6000’s in the UCLA Office of Academic Computing Center.

removable ground plane

T

Magnitude (dB )

S
—— removable ground plane

Figure 1: Generic via-hole and air-bridge transitions
in a multilayered medium.
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Figure 2: Arbitrary shaped ring-type antenna. Figure 3: Return loss of a circular ring with different

overlap coupling length: (a) Multiple mode excitation;(b)

Single mode excitation; e1=€2=2.2, di1=d>=0.794mm,

;=3.0mm, R,=7.5mm, feedline width=2.25mm(50Q), S
is the overlap length with 0 at the center of the ring.




"A. Electromagnetically-Coupled (EMC) Ring-Type Antenna

A popular type of microstrip antenna is the ring type shown in Fig. 2. To avoid the soldered
probe-feed excitation, a microstrip feed line is embedded underneath to feed the ring element
by electromagnetic coupling. Compared to circular disks, the ring antennas demonstrate larger
bandwidth and smaller size by a proper choice of the annulus radii [21]-[24]. Fig.3 shows the return
loss of an EMC circular ring antenna. The resonant frequencies of various modes and the lowest
reflection will be changed by adjusting the overlap length between the feedline and the ring. Fig.3
(a) shows that most coupling lengths can excite two modes, namely TM;; and T M, [23]-[25], but
Fig.3(b) shows that for some specific lengths only one mode can be excited. This property can be
exploited to design a radiator which can operate at single or multiple modes.

B. Via-Hole Application in Antenna Design
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Figure 4: A grounded edge-fed rectangular patch antenna. Left: power distribution versus frequency: Right:
axial ratio near 8.78 GHz. The antenna dimensions: d=1.575, W=L=12.7 line width=1.27,via size=1.27 x 1.27, via
positions: (6.985,3.81),(10.795,0.0), €,=2.33. All units in mm.

Our second example is an edge-fed rectangular patch antenna grounded by two vias . The vias
provide circular polarization and improved bandwidth by enhancing the coupling effects. The
structure and analyzed results are shown in Fig.4. The planar structure is introduced in [20] with
the analysis of power distribution by the spectral domain method. Addition of these vias shifts the
resonant frequency from 7.2 GHz [20] to 8.0 GHz with linearly polarized radiation (AR > 20 dB).
This also introduces another resonance at 8.78 GHz with circularly polarized radiated field (AR <
1 dB). The perturbation of the grounded vias makes the radiating element resonant along both the
x and y directions.

C. Dual-Slot Coupled Circular Patch Antenna

Our third example is a dual-slot coupled circular patch (DSCCP) antenna as shown in Fig.5. This
type of antenna was proposed by Shoki et. al.[26] with a stripline feed. Comparison with their
measured data is excellent, as demonstrated in Fig. 6 (Left). However, with a uniform microstrip
feed line, an input impedance match at the center frequency is not obtained as the dashed line in




Fig.6 (Right) indicates. We design and implement a quarter-wavelength microstrip transformer to
obtain a good match as the solid line in Fig.6 (Right) shows. A near 90% radiation efficiency is
also obtained.
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Figure 6: (Left)Comparison of axial ratio for a stripline fed

Figure 5: Configuration of a DSCCPA An- DSCCP antenna between this work and [26]. (Right) Input
tenna. impedance with and without a quarter wavelength transformer.

D. Grounded Via in an Infinite Microstrip Line

The next example is an infinite microstrip line grounded by a via, which was presented in [32] by
using the planar waveguide model.

£ Sy

-+ Rectangular via with A via basis
- Circalar via with A'via basis

3 6 9 12
Frequency ( GHz )

Figure 7: Magnitude and phase of S1: for an infinite microstrip line with ground via, €, = 2.2, thickness = 0.635mm,
line width = 3.0mm, via hole diameter = 1.22mm

The structure and analyzed results are shown in Fig.7 . Three different simulations are




investigated: 1) rectangular ground via expanded by one vertical current basis function with a
rectangular cross section; 2) rectangular ground via expanded by two vertical current basis func-
tions with triangular cross section; 3) circular ground via expanded by eight vertical current basis
functions with triangular cross section. The reference plane is along the center of the ground via.
All cases show that the current flows down to the ground plane, and a good short can be achieved
over a broad frequency range.
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Figure 9: S-parameters of bandpass filter with
two via grounds. Inset shows the triangular mesh.

Figure 8: Geometry of bandpass filter with two via hole

grounds (substrate height = 125um and dielectric constant =
12.9).

E. Vias in Filter Design

Our last example incorporates two via-hole grounds as shown in Fig.8. Two metered-bend lines with
rectangular pads are connected to the main transmission line. Each pad is grounded by a circular
via hole with a 100-pm diameter. The triangular mesh is shown in the inset of Fig.9. Eighteen
triangular cells are used to expand the vertical current for each via hole. The total number of
unknowns is 555, and the CPU time is about 39.2 s per frequency point. Compared to 444s/freq
for the Microwave Explorer 1.11 on HP730 [33], out algorithm is much more efficient. The simulated
results are shown for lossless layers and perfectly conducting microstrip lines in Fig.9. The resonant
frequency is predicted well as 13.5 GHz [33].
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